
511 

are given in the third and fourth columns for the inclined, and II&P_' and TIP-' for the 

parabolic stamp. ~11 the quantities are computed by the three methods described above. The 
number 1 on the left corresponds to the case a=0.5n.A.= 2 and the number 2 to a = 1.5s. h = 1. 
The values of the constants C and D are taken from /2/. 

Therefore, as in /9/, devoted to a wedge with a clamped lower face, joining of the 
asymptotic solutions for large and small h has successfully been established for a wedge 
lower face is stress-free. The method of reducing the integral equation with a symbol of the 
type 'cth to infinite systems of the second kind that enable the accuracy of the asymptotic 
solutions to be monitored can also be considered effective. 
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ASYMPTOTIC INTEGRATION OF NON-LINEAR EQUATIONS 
OF CYLINDRICAL PANEL VIBRATIONS* 

L.S. SRUBSHCHIK, A.M. STOLYAR and V.G. TSIBULIN 

Complete asymptotic expansions of the solution of the two-dimensional 
problem of the non-linear vibrations of a cylindrical panel with free 
curvilinear boundaries are constructed using the boundary layer method 
/l, 2/ in the case when the parameter 6, equal to the ratio between the 
lengths of the clamped and free sides, is fairly small. The principal 
term of the expansionfor the deflection function is determined from the 
known non-linear integrodifferential equation of arch vibrations. The 
discrepancies in satisfying the boundary conditions on the clamped 
boundaries turn out to be higher-order infinitesimals in 6 and are 
compensated by boundary layer functions that are determined from linear 
boundary value problems for a biharmonic operator in a half-strip. 
Calculations are performed by using finite differences for elastic, elasto- 
plastic cylindrical panels, arches, and rectangular plates subjected to 
an instantaneously applied transverse step load, and the limits of appli- 
cability are established for a monomial expansion. Questions on passage 

*Prikl.Matem.Mekhan.,52,4,657-665,1988 
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to the limit from the three-dimensional equations of the theory of elas- 

ticity to two-dimensional equations in the case of thin domains were in- 

vestigated in /3-5/ for non-linear problems. 

1. Formulation of the problem. The equations of the non-linear vibrations of an 

elastic rectangular cylindrical panel together with the initial and boundary conditions /6/ 

can be written in the dimensionless form 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

The dimensional and dimensionless quantities are connected by the formulas 

.rr = a,x, x2 = a,y, W = a,w, F = Da, T = ct 

c2 = pha14D)-l, a = EhaIzD-‘, k = a,R-l , Q = qDa,-3 

(D = Eh3 112 (1 - v2)1-') 

(1.5) 

Here W is the panel deflection, F is a force function, E is Young's modulus, Y is 

Poisson's ratio, h is the panel thickness, R is the radius of curvature in the x2-direction, 

and p is the density of the material. It is assumed that the transverse load Q is a function 

of the longitudinal coordinate x1 and the time z. The panel planform occupies the rectangle 

I “R I < =p, B = 1, 2. The boundary conditions (1.3) correspond to a free edge, and (1.4) to a 

fixed hinge support. 
Besides problem (l.l)-(1.4), the non-linear integrodifferential equation of the vibrations 

of a circular arch, written below in dimensionless form 
'Xh I I I I 

(1 - va) a,pw + cyw - $-(k+Qw) &(a,w)a-kw]dx=q (1.6) 
-1 

Iw, &wlt=a= 0, [w, &*wl,=*I = 0 

‘w Fig.1 
is considered. 

/ 2 3 rl 

2. Construction of the asymptotic expansions, A natural small parameter 6 occurs 

inthe system of EqS.(l.l)-(1.4) as a factor ahead of part of the higher derivatives. Therefore, 

thereisthe problem of constructing an asymptotic form as 6 + 0. 

Asymptotic expansions are constructed in the form 

The functions WI?%7 %I are found by using a first iteration process /l/. 

solution is sought in the form 

(2.1) 

For this the 

(2.2) 

We substitute (2.2) into (l.l)-(1.4) and collect coefficients of identical powers of 6. 

Equating the coefficients of 6' and 6l to zero, to determine UJ,,,@~ and w,, @, we obtain 

a,4w,=o; [ayawm,a,'w,],=*l=O; Iw,, axPw,lz=fl=o; (2.3) 
m-O.1 
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Seeking ~,,,,a,,, in the form 

we have from (2.3) 

%=%?,rJ(~~ t) + YWnl,l(% t)? l%,or a,Gn>&=*:l=O, @,,=O (2.4) 

The function w~~,~ is still unknown and will be determined below. The function CbO is 
taken to be equal to zero since it follows from the formulation of the problem (l.l)-(1.4) 
that the function @ is determined to the accuracy of linear components in z and y. Con- 
tinuing the iteration process it is found that the functions w,,,,,, @,,, vanish for odd values 
of m and j. Consequently, henceforth in this paper we speak at once about evaluating the 
function ~,,,,l,@,,,,~ for even m and j. 

Equating the expression for h2 to zero and taking (2.4) into account, we deduce 

w, = w,,o (5, t) + Y2W*,* (I, 0; 2w2,2 = -va,~wu,,,; (2.5) 

Q = G W !f 

The function %*a is still unknown and will be determined below. At this stage of the 
first iteration process, theconditions on the boundary z = i-l are not satisfied. The 
discrepancies occurring here are later compensated by using boundary-layer functions. 

To determine c,(t) we will use the well-known identity connecting the functions 0 and 
W for a fixed reinforcement of the boundary z =+i in the longitudinal direction 

{ (avW - .6’a,W) dx = ai38 \ [ -+ (a,~)~ - kw] dx 
-1 -1 

Using (2.2) and (2.5), we deduce from (2.6) that 

ca PI =G ( [ + (arwo,o)g - kwo,o] dx 
-1 

Equating the expression for 6" to zero, we obtain the system of equations 

aVbw, + 2a,~a,b, + a,‘w, + a,*w, - (k + a,gwo.o) a34 = P 
Ia,2w, + va,*w,, a;w, + (2 - V) a2avwJv_-fl = 0 

a,Q-D, + a (k + a2wo.d a;wa = 0, [ia% a,&$hl,-*, = 0 

We find from (2.8) 

WJ) 

(2.7) 

(2.8) 

(2.9) 

W4,a = (1 - v) ax+e.a - + ax~w2,0 

Here w,,, is also an unknown function. Taking account of (2.5) and (2.7) to determine 
the principal term of the expansion (2.2) from (2.8) and (2.9), we obtain the integrodiffer- 
ential Eq.(1.6) for which the zero-th initial and boundary conditions are derived from (1.2) 
and (1.4) by using (2.4). 

Changing to dimensional variables in (1.6) by means of (1.5), we arrive at the well-known 
equation of arch vibrations. Furthermore, we find @,,theprincipal term of the expansion 
(2.2) for the function @ from (2.5) and (2.7). 

Let us now construct the next terms of the asymptotic form. It can be shown that W¶,l 
@ am are determined in the form 

In particular, we have from (2.5), (2.6) and (2.8) 

@.,O=@r,*=~ x Orvf a *w,,,; CD,,, = - 2%,4 + 1 Q4.4 & + + 
-1 
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To determine W,., derive 

(m = 
We note that, 
2, 3, f . *) to 

The functions 1 ,rn7B. @*?IS*tPf (i = 2, . . *, m f I) are found in the previous stages of the first 
iteration process, while the functions wImraj are calculated in terms of derivatives of the 

( f - k + a,2w,,,; 

(2.10) 

unlike (1.6), Eq.(2.10) is linear. Equating the expressions for Se"2,82m+4 
determine the functions w,, and #*, we obtain 

(1 - v=)ax~rm,O + ++m,O- 2fcDam+z--~~8,4ar~Wam.0=zam.0 (2.11) 
m-F1 

@~+w=C~+~W - jI?B j@8m+0,tf; @alsm+a,o= T?jr(j - i)@z)am+e,af 

functions wotO, we,*, . . ., went-kro. The functions CSm+i(l) (m>i) are determined from the 
identity (2.6) on substituting the expansion (2.1). 

The boundary-layer functions u,,,,(P,,,(v,,,,&,), concentrated in the neighbourhood of 2= 
-1 (5 = I), compensate for the discrepancies in satisfying the boundary conditions (1.4). They 
are determined by using the second iteration process /l/. Boundary values for a+awS.o,u+,,o, 

a+zwrm.o (m > 2), needed to close Eqs.(2.10) and (2.11) are obtained here simultaneously. We 
substitute (2.1) into fl.l)-(1.4)‘ we take account oftheresults of the first iteration process, 
we make the change of variables x = --1+ S& (.z = 1 + SC) and we collect coefficientforident- 
ical powers of 6. Equating the coefficients for P to zero, we find a system of non-linear 
equations with zero right-hand side for uo,tpo from which we obtain u. = 'p. =O. Equating the 
coefficients for 61,6p,8s to zero we deduce 

1iI ur = 'ps = u, = US = 0, A,%, = 0, [@R, +a,,i&+ = 0 (2.12) 

Fig.2 

(2.13) 

We note that the boundary value problems for u,,,,(p,,, are linear for m > i. The func- 
trons v,, %n are found analogously.' 

We will illustrate the calculation of the boundary-layer function u, for the case of a 
rectangular plate (k =O). we construct the solution in the form 

2 
AI!! 
h 

“4=ao~-*U70(y)+ 2Re i a,,,e+F,(y) 
m-1 

The Papkovich functions 8',(y) f7/ are determined from the 
I boundary value problem (the prime denotes the derivative with 

respect to 2~) 

Fig.3 

/ 0.2 t, msec 

F,,,Iv + 2s,,,"F," + sm4F, = 0 (2.14) 

IF,,," + vs,,,V=t,,, F,” + (2 - v) smaF,,,‘&.~t = 0 

(So, %I are, respectively, the real and complex roots of the equation Y (s) s (3 f v) sin 2s 

-0 Gv)c%~E‘te d m fromthe boundary conditions (2.13),theproblem is posed of representing 
the two real functions it = --w‘(-l,y,t) and fr = -a$&(-it&t) in the form of the series 

Were the time t plays the part of a parameter. 
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For the first boundary value problem, questions of the completeness of the system of 
elementary Papkovich solutions for the biharmonic operator in a half-strip were investigated 
in /8-lo/. The conditions for series (2.15) to converge for F,,,(*l)=P=’ f+i)= 0 are 
obtained in /ll/, and in 112, for the problem (2.14). By using these conditions we find 
missing boundary condition for problem (2.10) and one for problem (2.11) for m = 2. 

To obtain the initial conditions for t = 0 for the function *~,,,,,a we substitute (2.1) 
into (l.Z), and we collect coefficients of identical powers of 6 and equate them to zero. 
In particular, the coefficient for ho yields the initial conditions written in (1.6) for 

we.0 * The consistency conditions 

q (I-1, 0) = as2q f&l, 0) = atq (rlrk 0) = 0 

should be satisfied here. 
The coefficients of 6a and 6' reduce, respectively, to the zero-th initial conditions for 

the functions w,,~, a,~,,~ and w&.,,, &w,,,. Analogous consistency conditions on the higher 
derivatives of q are added to construct the next terms of the expansion. 

After evaluating the principal terms of expansion (2.1) the process of constructing the 
next terms of the asymptotic form is continued analogously: functionSofthe first and second 
iteration processes are determined alternately. The boundary values of the functions of the 
first iteration process. wSm,o, ax~tup,,c are determined simultaneously in the solution of the 
boundary layer problems. 

Remark lo. In the caee of rigid clamping of the panel edges =I = *oc (II~.~,w]- = 0) the 

principal term of the expansion is also determined fromlthe equation of arch vibrations, but 
withtheboundary conditions is, axwl_*~~== 0. 

2O. In the case of hinge of supports or rigid clamping of the boundaries I*= fe, there 
is no passage to the limit from the equations of the vibrations of a cylindrical panel to the 
equations of the vibrations of an arch. 

3O. The algorithm elucidated can be carried over to the case of a load of the form 
--ft r) = Q (21, IS, 7). 

Q(I,, 

3. Linear vibrations of a rectangular plate. Applying the method of Sect.2 to 
the linear equation of the vibrations of a rectangular plate with two hinge-supported and two 
free sides 

E'S 12(1-v') A’W f ph&*W = Q (q, T), [IV, &W]c+, = 0 

[a,rw 4- vatw, a,w + (2 - V) a:a,wl,,,,,=o; 
w, 4w~,,,=o 

(3.1) 

we obtain that the principal term of the asymptotic expansion is 
determined from the known linear equation of the vibrations of a beam 

Fig.4 

To estimate the effectiveness of the asymptotic method, problems (3.1) and (3.2) were 
investigated numerically for a constant step load with amplitude Qo= 5 kPa, applied in- 
stantaneously at the time r=O. An explicit finite difference scheme was used for both 
problems. The geometric and mechanical parameters were assumed to be as follows: E= 210GPa; 
p=?850 kg/m3; v=O$h=i mm; 0,=2Omm; &=a&+ In Fig.1 we show a graph of 

where Tband T, are the times at which the first maximum of the deflection function occurs for 
plates with parameter b and beams, respectively. Curve 1 corresponds to rigid clamping and 
curve 2 to hinge - supports of the edges za=fo~ In particular, the value of x (0.5) equals 
4.3% and 8.7%, respectively. 

We note that for the problem regarding the equilibrium of a rectangular plate compressed 
in the longitudinal direction, the problem of replacing it by a compressedrodinthe calculations 
was examined in /13/ (p.255) and /14/ (p.16). 

4. Dynamic snap-through of an elastic cylindrical panel. we will consider the 
equations non-linear of vibrations of an elastid cylindrical panel, taking inertial terms in 
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the tangential directions into account /6/ 

Here U, are the tangential displacements of the middle surface and Nq and Map are, 

respectively, the forces and moments. The boundary conditions on x1 = +a,correspond to 

fixed hinge support and the boundary conditions on 4 = tap to a free edge. 

Applying the method of asymptotic integration from Sect.2 to problem (4.11, we obtain 

the equations of the vibrations of an arch to determine theprincipalterms of the expansion 

11 0 1 0.2 e.msec 

Fig.6 

Ph@Wo = Q + 9, (alAd -;- IVB,W,) - -$ ; ph&2ul,o =a,N ,(4.2) 

hli 

(N7M)= i o{l,z}dz, ,~=,y~ 
--h/2 

To solve problems (4.1) and (4.2), we use an explicit 

finite difference scheme. Taking account of the syrmnetry 

available in problem (4-l), a quarter panel &. 22) EIO, ~11 X 

IO. %I can be considered and the fundamental mesh 

-i (zl, i,, .zzsi.) ] z,, i, = i,g,; i, = 0, 1,. ., n,; ka = $ ; e=l,Z 
a > 

and the auxiliary mesh 

can be introduced on it. 
The deflections, strains, stresses, forces and moments will be determined at the nodes 

of the fundamental mesh while the tangential displacement of the middle surface will be 

determined at the nodes of the auxiliary mesh. 
The following geometrical and mechanical parameters were taken: a,=ZOmm, h=i mm, 

R = ioomm, p = 7850kg/m3, E= 2iOGPa and v = 0.3. Calculations were performed for a panel and 

arch up to the time r,= 300psec with an identical mesh spacing in time. The mesh parameters 

for problem (4.1) are n,=2nl=20. The segment O<s,<ar that was partioned into 20 equal 

elements was considered in problem (4.2). The quantities 

were determined when calculating the vibrations of a panel for different values of the par- 

ameter 6 and of an arch. 
Here e (6) and o,, are the maxima of the deflections of the panel centre and of the 

arch respectively. 
Results of the solution of problems (4.1) and (4.2) for a constant step load Q(zr, 7) = Q. 

applied instantaneously at the time r=O are shown in Fig.2. Curves 1-4 are drawn for the 

dependence 11 (W, respectively, for the following values of Qo: 0.5, 2, 3, 3.8 MFa. It is 

seen that the solution of the arch equation describes the panel vibrations quite well. For 

instance , for g=0.5 and Qa<2 MPa the disagreement in the results does not exceed 5%. 
Fig.3 shows graphs of the time dependence of the panel deflection W/h at the point 

40, 0) and the arch Wdh for z,=O. Curves 1, Zand 4 refer to a panel with 6=0.5 for Qo=3.8, 

4,4.1 MPa, respectively. Curves 3 and 5 are obtained from an analysis of a panel with 6= 

0.25 and on arch for Qo=4MPa. The deflection maximum for a panel with 6 = 0.25 and an 

arch for Qo= 3.8 MPa is marked by a circle and a cross. On the basis of the Budiansky-Roth 

criterion /lG/, the critical dynamic snap-through Qd: Qd lb+ = Qd (i) = 4.2 MPa; Qd (0.5) = Qd (0.35) = 
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Qd (0.25) = 4.1 MPa were found with up to 0.1 MPa accuracy for panels with different 8. For the 
arch, Qd= 4MPa was obtained. We note that the critical dynamic snap-through load is a 
"stable" characteristics of an elastic system. Despite the fact that an increase in '1 (0) 
(see Fig.2) occurs as the load Qa approaches the critical load Qd while the functions W(O,O,r) 
and W,(O,r) differ substantially in amplitude and frequency of vibration (see Pig.3), the 
magnitude of the critical load itself is determined with a 2.5% discrepancy by arch theory. 

Results of analyses of panels and arches with rigidly clamped edges zI = +a, under the 
action of a load Qo=2 MPa are indicated by dashes in Fig.2. Compared to the case of hinged 
supports the appropriate values of the function 11 (0) are somewhat higher here. For the 
critical dynamic snap-through load of a rigidly clamped panel we obtain Qd (I) = 4.4 MPa, 
Qd (0.5) = Qd (0.35) = Q,, (0.25) = 4.3 MPa. The critical dynamic snap-through load equals 4.2 MPa for 
an arch. 

The influence of the transverse load distribution over the panel width (the coordinate .r.& 
can be estimated from Fig.4, where the dependence e (6) is presented. Cuves l-3 are obtained 
from analysis of a panel under the loads Q,= 2Q,(1 - j.~,I/a,), Q2= Q,,, Qs= 2Q01221/a,. The dashed 
line corresponds to the maximum deflection of an arch 0. for a load Q,,. Fig.4 shows the 
results for Qo= 1MPa and Fig.4b shows the results for Qo=O.5MPa. It is seen that as the 
parameter 6 decreases the influence of the load distribution non-uniformity on the panel width 
drops and can already be neglected for 6= 0.35. 

Fig.5 shows the distribution of the deflection functions along the line 2,=0 at the 
time 'c== 70 psec for a panel with 6=1 (a) and 6 = 0.5 (b) evaluated for the loads Q1,Q2, QJ 
(curves 1-3, respectively) for Qo= 0.5 MPa. The arch deflection at the point r,=O is 
superposed by a dashed line. It is seen that a derease in the width increases the panel 
stiffness in the z1 direction and the non-uniformity of the application of the load has only 
a slight effect on the results. 

5. Dynamic snap-through of an elasto-plastic cylindrical panel. Numerical 
results analogous to those in Sect.4 are obtained in the case of a cylindrical panel with the 
same geometrical and mechanical parameters, with a yield point (rr =0.24GPa and tangential 
modulus E,= 2.1 GPa. The governing relationships were taken accordiny to flow theory with 
kinematic hardening /17/. The critical dynamic snap-through loads Qd (i) = Qd (0.5) = 1.7 MPa 
Qd (0.35) = Qd (0.25) = 1.6 MPa are obtained to O.lMPa accuracy for a step load by application of the 
Budiansky-Roth criterion. Por an arch Qd= 1.6 MPa is obtained. 

Fig.6 shows graphs of the arch deflection W, (0. 7)/h and panel deflection W(O,O,r)/h for 
different values of the parameter 6 and the load Qo. Curves 1 and 2 correspond to a 
calculation with 6 = 0,5 for Qp= 1.4 MPa and Qo=i.5 MPa, respectively. Curves 3-5 are 
obtained for Qo=i.O MPa and correspond to the following values of 6: 1.0, 0.5, 0.25. The graph 
of the dependence of the arch deflection W,(O,r) for the load Qo= 1.6 MPa is denoted by the 
number 6. It is seen that ignoring the plastic properties of the panel material significantly 
exaggerates the magnitude of the critical dynamic snap-through load. At the same time the 
nature of the convergence of the solution for a panel of decreasing width to the solution for 
an arch is analogous to that obtained in the case of the elastic behaviour of the material. 
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THE METHOD OF ASYMPTOTIC INTEGRATION AND THE "METHOD OF SPRINGS" 
IN PROBLEMS OF ELASTIC PLATES WITH AN ELONGATED CUT* 

R.V. GOL'DSHTEIN and L.B. KOREL'SHTEIN 

A class of problems in the theory of the elasticity of plates with an 

elongated non-through cut under arbitrary loading is analysedby the 

method of asymptotic integration /l-3/. An asymptotic solution in a small 

parameter (the ratio of the plate thickness and the length of the cut is 

constructed as the sum of an external solution corresponding to the two- 

dimensional problem of plate theory and an internal solution corresponding 

to the boundary layers in a zone of order h near the cut as well as the 

plate boundaries. 

It is shown that the cut affects the elastic state of deformation in 

the plate (outside the boundary layers) in the second term of the external 

solution resulting in jumps in the kinematic and force factors on the line 

of the cut. Equations are obtained that express the jumps mentioned in 

term of the geometrical parameters of the cut and the energy character- 

istics of the first terms of the internal solution that is the state of 

plane and antiplane strain of a strip with the cut under the action of 

loads on the surface of the cut governed by the forces and moments of 

the first term of the external solution on the line of the cut. After 

the solution of the appropriate plane and antiplane problems for the first 
term of the internal solution, determination of the second term of the 

external solution reduces thereby to a problem in the theory of plates 

with the boundary conditions on the line of the cut and the edges of the 
plate. The second term of the asymptotic form of the boundary layer near 

the cut is the solution of more complex plane and antiplane problems for 

a stripwith a cut, with a load including volume and surface forces 

associated with the change in the first term of the solution for the 
boundary layer along the cut. 

Starting from the equation obtained in the case of a cut that is an 
extended rectilinear surfacecrack (normal to the plate surface) for both 
symmetric and antisymmetric loading approximate boundary conditions can 

be formulated on the line of the crack for a binomial asymptotic form of 

the external solution, which enables us to pose a problem in the theory 
of plates taking the influence of cracks into account. For symmetric 
loading these boundary conditions reduce to equations of the known Rice- 
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